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We study a continuous-time organization design problem. Each
member’s output is an imperfect signal of his underlying effort, and
each member’s utility from remaining in the organization is endoge-
nous to other members’ efforts. Monetary transfers are assumed
infeasible. Incentives can be provided only through two channels:
expulsion following poor performance and respite following good
performance. We derive the steady state distribution of members’
continuation utilities for arbitrary values of the initial and maxi-
mum continuation utilities and then optimize these values according
to organizational objectives. An optimally designed organization
can be implemented by associating continuation utilities with a
performance-tracking reputation system.
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If the members of a large group rationally seek to maximize their
personal welfare, they will not act to advance their common or group
objectives unless there is coercion to force them to do so, or unless
some separate incentive, distinct from the achievement of the common
or group interest, is offered to the members of the group individually
on the condition that they help bear the costs or burdens involved in
the achievement of the group objectives.

—Mancur Olson, The Logic of Collective Action: Public Goods and the
Theory of Groups (1971)

Organizations where members share access to a collectively produced common
good are ubiquitous: e.g., communities, co-ops, clubs, and teams. Such collectives
are often egalitarian in the sense that output is shared more or less equally among
members. This can occur either for technological reasons (when a team wins, all
its members enjoy the victory), or for ideological reasons (the output of communal
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farms such as the Israeli Kibbutzim or North-American Hutterite settlements
customarily accrues equally to all adult members (Van den Berghe and Peter,
1988; Abramitzky, 2008)). It is, therefore, often either infeasible or undesirable to
provide incentives to members of a collective through explicit monetary channels.
Rather, the organization may track the performance of individual members and
may use a variety of non-pecuniary incentives such as rewarding good performance
with respite or prestige and punishing poor performance with peer pressure or —
in extreme cases — expulsion (Freeman, Kruse and Blasi, 2008).

In this paper we analyze a continuous-time organization design problem where a
social planner must manage incentives for a continuum of agents — the members

— who may make costly contributions to each other’s payoffs in the form of
contributing to the commonly consumed good. Such effort is not observed directly,
but rather with noise, and thus each agent’s performance is stochastic. To provide
incentives, the designer maintains a (possibly informal) reputation system tied to
agents’ performance, whereby agents who hit the bottom of the reputation scale
are expelled from the organization and agents who hit the top must be allowed
a respite, that is, to shirk for a nonnegligible amount of time. At the top of the
scale, an agent’s situation can improve no further, and thus it is impossible to
incentivize effort. Between these extreme ends of the scale, agents are expected to
exert full effort. Because expulsions and respites are both socially inefficient, each
agent’s reputation is linked to his stochastic output with the minimal sensitivity
consistent with incentive compatibility.

Our main insight is that collective organizations feature a particular dynamic
feedback effect, and thus their optimal design often involves a novel trade-off not
present in standard principal-agent settings. In collective organizations, the value
of being a member is endogenously determined as a function of the efforts of
all other members. Absent monetary transfers, such an organization can mimic
the effect of bonus payments for good performance by allowing agents to shirk
occasionally; however, shirking by some agents reduces the value to all agents of
being in the organization. In turn, this reduces members’ fear of being expelled
for bad performance, further undermining incentives.

We model organizations as having an exogenous inflow of new members, which
is meant to capture the fact that individuals hear about the organization or
develop an interest in it over time. The instantaneous effort of each member of
the organization is confounded with normally distributed noise, and thus a given
agent’s performance and continuation payoff are Brownian diffusions. Given the law
of motion of agents’ continuation values under the reward and punishment scheme
described above, we employ methods in stochastic processes to derive the steady
state in which the density of organization members at each level of reputation
(or continuation utility) remains constant over time. The characteristics of the
steady state distribution are governed by two parameters: the highest attainable
level of continuation utility, w∗, and the level at which new organization members
are inserted, w0. We then use this steady state to frame the designer’s problem
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directly, which — as discussed further below — may involve a variety of different
objective functions.

The steady state distribution exhibits several critical features. First, by defini-
tion, the continuation value w = 0 is a resetting boundary in the sense that the
flow of agents being expelled from the organization at that point must equal the
flow of new agents joining at the higher level w0. Second, w∗ is a sticky boundary
or slow-reflecting barrier in the sense that an agent reaching this level accumulates
a positive (finite) expected measure of time there. Moreover, an agent exerts
low effort — shirks — if and only if his continuation utility is exactly w∗, and
otherwise he provides high effort — works. Together these observations imply that
the steady state distribution possesses a positive mass of agents at the very top of
the scale who are rewarded with a respite from working. Importantly, because we
are studying an organization where efforts have externalities, these reward periods
affect all members and their incentives by reducing their collective flow benefits.
For the organization to be sustainable, agents must earn a positive continuation
payoff from membership.1 This places a natural limit on the fraction of members
who feasibly can be permitted to free-ride at any given instant.

Our primary goal is to investigate a social planner’s organization design problem;
namely, we allow her to choose w∗ and w0 subject to feasibility constraints. To
build intuition, and as an intermediate step in solving the problem, it is useful to
consider a relaxed problem whereby the planner promises agents a fixed, positive
flow payoff from membership in the organization. This results in a bounded set
of design parameters, w0 and w∗, for which the organization generates enough
output to cover the promised flow payments. We show that when the principal
increases w0, the starting value to new agents, both the mass of working agents
and the mass of shirking agents increase, and in fact, the latter effect dominates
with respect to the fraction of agents shirking; the planner may, therefore, be
forced to limit the starting utility assigned to new members in order for generated
output to cover the promised flow to all members. Increasing the maximum
continuation value w∗ means promising later, but more frequent, periods of respite;
this change in the organization also increases both the mass of working agents
and the mass of shirking agents. The latter effect eventually dominates, and the
average output of the organization falls. Hence, the principal must also limit the
maximum continuation value to agents in the organization, which in turn limits
their expected tenure and ultimately the overall size of the collective.

We then consider two possible objective functions for the planner. For instance,
a planner who generates revenue primarily through advertising (e.g., a social
network) would want to maximize the size of the organization. In this case, the
objective is increasing in both w∗ and w0: increasing these values delays the time
at which agents are expelled, which leads to a larger organization in the steady

1Our participation constraint assumes that agents are free to exit the organization at will. This
was not the case, for example, in the collective farms of China in the 1960s and 70s, where peasants,
who would have preferred to migrate to cities, were compelled to live and work on their assigned rural
plantations (Zhao, 1999).
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state. The feasibility constraint then forces the planner to trade-off higher w0

with higher w∗. On the other hand, a social planner may — as in a partnership or
co-op setting — want to maximize the per-capita output of members, which would
involve maximizing the fraction of agents working.2 We show that this objective
leads to a vanishingly small organization; members are promised an arbitrarily
small continuation value with virtually no hope of earning an opportunity to free-
ride before being dismissed. Whatever her objective, we note that by identifying
continuation utilities with reputation scores, the planner’s problem can be thought
of as the design of an optimal reputation system.

We discuss applications of our model and related literature in the next section.
In Section II we introduce the formal model along with a broad overview of
the steps involved in the analysis. In Section III we solve for the steady state
distribution of continuation utilities (i.e., reputations) of the organization members
for arbitrary values of the policy instruments. Section IV characterizes the feasible
set of choice variables. In Section V we discuss the principal’s organization design
problem for the two possible objectives mentioned above. We summarize our
findings and outline some directions for future work in Section VI.

I. Applications and Related Literature

A. Applications

Our setting has three key features that distinguish it from standard dynamic
contracting models: (i) agents decide whether to exert effort, which has positive
externalities, (ii) the organization designer has limited incentive instruments,
namely respite and expulsion, to incentivize agents to exert effort, and (iii) the
designer chooses how to use these incentive instruments, taking into account how
agents will behave in response. Numerous organizations exhibit such traits to
some degree.

Feature (i) can arise in organizations in two ways. First, in some organizations,
agents’ efforts contribute to a common good which is divided evenly among all
members. As noted above, in farming collectives such as the kibbutzim and
Hutterite settlements, output — or the proceeds from selling output — is generally
shared equally among all adults (Van den Berghe and Peter, 1988; Abramitzky,
2008). Likewise, when members of a club exert effort to promote an event or
engage in fundraising activities, all members of the club benefit. Second, in some
organizations, such as ride-sharing or room-rental platforms, agents are paired
with one another in short-term matches, and each agent’s effort benefits solely
her current partner. For example, in the case of a ride-sharing platform, positive

2The literature on the neoclassical theory of labor managed firms uses the term Illyrian firm to refer
to those which maximize dividends or net revenue per worker (Ward, 1958; Law, 1977). However, see our
discussion of the objectives actually pursued by worker co-ops at the end of the following subsection.
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externalities within a match are associated with the efforts of both drivers and
passengers to be prompt and courteous.

Feature (ii) is motivated by the observation that transfers are notably absent
as incentive instruments in many organizations. The kibbutzim and Hutterite
settlements, having been founded on egalitarian ideals, are opposed to transfers by
their very nature. Sharing economy platforms typically do not use bonus payments
based on ratings to incentivize their users.3

Feature (iii) forms the essence of organizational design. For instance, Uber
maintains a five-star rating system for both drivers and passengers, with 5.0 being
the maximum possible rating. In September 2018, Uber introduced a policy in
Australia and New Zealand, where the average user’s rating is 4.5, of deactivating
users whose ratings fall below a minimum level (Cherney, 2018). In an example
where the community is interpreted at a national scale, China has introduced
a social credit rating system for all its citizens which takes into account both
financial behavior (such as credit-card payments) and social behavior (such as
volunteer activity and adherence to family-planning limits); this system integrates
with already existing blacklisting systems used to restrict activities such as loans
and travel (Chin and Wong, 2016). In both of these examples the function of the
rating system is to track performance and incentivize good behavior as defined by
the designer.

Perhaps the best overall application of our model is to a worker cooperative or
labor-managed firm (LMF).4 These entities are generally founded on egalitarian
principles and therefore exhibit a high degree of equality in pay among members
regardless of seniority or skill differentials (see Chapter 6 in Bonin and Putterman
(2013) for numerous examples and insightful discussion). Thus, a typical LMF
produces output that is shared more or less equally by its members and does not
provide incentives through explicit monetary channels. Monitoring in modern
LMFs is often performed by peers where: “most workers say that they can detect
fellow employees who shirk . . . and many report that they would speak to the
shirker or report the behavior to a supervisor” (Freeman, Kruse and Blasi, 2008,
p. 1). While termination appears to be more rare in LMFs than in conventional
firms (Alves, Burd́ın and Dean, 2016), the ultimate threat of dismissal still plays
an important incentive role in a variety of co-op settings (Albanese, Navarra and
Tortia, 2017). This is especially true for junior or candidate members who often
face a probationary period before becoming vested members of the enterprise.

3To be sure, ride-sharing platforms such as Lyft, Gett, Juno, Uber and Via, do allow passengers to
tip drivers through their apps, but a recent survey of over 2600 active Uber drivers revealed that “. . .tip
income was negligible in the majority of cases.” (Wong, 2018)

4The most authoritative empirical research on worker cooperatives in the US is Craig and Pencavel
(1992) who investigated the behavior of the largest and most durable LMFs in US manufacturing, the
plywood firms in the Pacific Northwest. Three other examples of historically prosperous co-ops, worker-
owned scavenger companies, taxi cooperatives, and professional partnerships such as legal or accounting
firms, are discussed by Russell (1985). Non-profit hospitals were modeled as physician cooperatives by
Pauly and Redisch (1973), and university academic departments were modeled as faculty co-ops by James
and Neuberger (1981).
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However, “shareholders can also be fired for repeated malfeasance” (Craig and
Pencavel, 1992, p. 1084). For instance, Bylaw 21 of the shareholder’s manual
issued by the Fort Vancouver Plywood Company, Inc. provides:

The board of directors at any regular or special meeting shall have
the power by a majority vote to remove from working status any
shareholder-worker whom they shall find to be physically or mentally
unfit for such work, or who refuses to do his work as outlined by the
management.5

While it is difficult to document explicit respite policies for good performance
as such, Craig and Pencavel (1992, p. 1085) report, “Job assignments are varied
and sometimes rotated, although, if a particularly attractive position opens up,
its allocation is determined by seniority or previous work performance.” Thus, the
structure and internal governance of LMFs appear to square remarkably well with
the three distinguishing features of our model: team production, non-pecuniary
incentive instruments, and implementation of incentives via imperfect dynamic
monitoring.

The question of optimal organization design presupposes an objective function
for the designer, and indeed, there has been considerable theoretical debate about
the objectives of LMFs ever since the seminal publication by Ward (1958).6 To
address the question empirically, Burd́ın and Dean (2012) use panel data from
31 Uruguayan industries to estimate the relative weight worker-managed firms
place on total employment (firm size) versus dividends (net revenue per worker).
Interestingly, the LMFs in their data appear to place relatively high weight on
the size of the enterprise, employing systematically more workers than would
comparable profit-maximizing firms. In a sense, this observation also squares
with our results. Specifically, we show in Proposition 8 that an organization
that endeavors to maximize per capita output without placing any weight on
employment must be arbitrarily small.

5See http://courts.mrsc.org/appellate/024wnapp/024WnApp0120.htm. There is evidence that this
provision was indeed sometimes used to dismiss vested members of the cooperative who were detected
shirking. In one such case a dismissed worker’s foreman testified in court:

Well, he was placed on the 8-foot green chain during the three days. I observed his work
habits and they were very poor. And I received numerous complaints from the other green
chain workers. And so I told Mr. McIntyre two or three times he was going to have to
improve, work harder, just show more initiative. The following two days I didn’t see any
initiative at all. The other four guys had to do all the work. And I had gone to the
superintendent on a couple of times and asked him to come down and watch and see what
kind of problems I had. So he did come down and observed his work habits a couple times
before we decided on the pink slip.

6The objective functions we consider, namely organizational size and per capita output, are analogous
to the two sides of this debate.

http://courts.mrsc.org/appellate/024wnapp/024WnApp0120.htm
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B. Literature

Besides the literature discussed in the previous subsection, this paper also
contributes to several additional lines of research. The first, on the economics of
clubs and other collective organizations more generally, begins with the classic
works of Buchanan (1965) and Olson (1971), along with Helsley and Strange
(1991), Scotchmer (1985), and Oakland (1972) among others, dealing with optimal
group membership, size, and fee structure.

A second literature to which we contribute, on the use of ratings and reputation
for incentive compatibility, begins with Holmström (1999) and includes — among
others — a recent working paper by Hörner and Lambert (2016). This literature
investigates the use of reputation as a means for eliciting the rated agent’s cooper-
ation in a setting where the principal has imperfect control over compensation. In
order to maintain a high reputation — and thereby a high continuation payoff —
agents are required to produce a stream of signals reflective of high effort.7 Using
different terminology, Olszewski and Safronov (2018) study the use of chips for
incentives in a favor-exchange game between two players.

Another branch of related research studies continuous-time optimal contracting
in the context of corporate finance. The pioneering article in this literature is
DeMarzo and Sannikov (2006) (hereafter DS), which was followed by a number of
related works including Sannikov (2008), Zhu (2013), and Grochulski and Zhang
(2016).8 Each of these papers investigates variations of the DS baseline model
which we, too, adapt to our setting. Specifically each of them considers a single
agent who may take an action either to produce output or to benefit himself, and
solves for the optimal path of continuation values in order to maximize output.
DS implement their optimal contract by way of basic financial instruments, while
the others abstract from implementation considerations.

We also contribute to a recent burgeoning literature on dynamic incentives
in the absence of monetary transfers. For instance, Li, Matouschek and Powell
(2017) study the dynamic allocation of power between a principal, who has formal
authority in the organization, and an agent, who has private information regarding
the current set of available projects. Under the optimal relational contract, the
agent recommends a project to be completed each period. The more frequently
he recommends the principal’s favorite project rather than his own, the more
continuation utility the agent accumulates. High values of continuation utility are
associated with more power in the organization in the sense that the principal
is obliged to accept the agent’s recommendations with greater frequency. The
authors show that this process ultimately converges to one of two (inefficient)
absorbing states: a maximum level of continuation utility for the agent that is
implemented by always accepting his recommendations or a minimum level of

7An alternative use of ratings is studied by Bonatti and Cisternas (2018).
8See also the literature on folk theorems in continuous time with imperfect monitoring; e.g., Sannikov

(2007), Peski and Wiseman (2015), and Bernard and Frei (2016).
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continuation utility that is implemented by never listening to him. Another paper
in this vein is Lipnowski and Ramos (2018) who explore delegated authority in an
infinite-horizon game with imperfect monitoring. In this setting a principal wishes
to fund good projects and not fund bad ones. An agent is privately informed
about the state of each project, but prefers the principal to fund them all. In
the initial phase of the relationship the agent is granted considerable authority
to initiate projects and he accordingly directs the principal to fund all good ones
as well as a significant fraction of those that are bad. As time progresses, the
agent’s goodwill eventually runs dry — the equilibrium of the game enters a phase
where the principal rarely delegates authority to the agent, and when she does,
the agent recommends only good projects. A third recent paper in this line is Guo
and Hörner (2018) which investigates the limits to efficient dynamic allocation
in the presence of private persistent information. In this model, a social planner
with full power of commitment wishes to supply a perishable good to an agent
in those periods when his valuation exceeds the constant provision cost. The
agent’s valuation is always positive but is not observed or learned, even imperfectly,
by the planner. As in Li, Matouschek and Powell (2017), the optimal incentive
compatible mechanism eventually converges to one of two antipodal (inefficient)
situations: the agent either receives the good in every period ad infinitum or he
never receives it again.

While we too consider dynamic incentives in the absence of monetary transfers,
our focus differs from the three papers just outlined in several key respects.
First, we consider a continuum of agents who interact with each other rather than
focusing on providing incentives for a single agent in isolation. Second, the designer
in our setting is interested in the optimal structure of the collective organization
as represented by the steady-state equilibrium distribution of continuation utilities
of its members. Finally, we study a hidden action model in continuous time rather
than a hidden information model in discrete time.

Of course, our paper also contributes to the organizational economics literature.
Specifically, because each agent in our model receives a gross expected payoff related
to the effort provided by other agents, our setting resembles a dynamic partnership
in which output is divided equally among the members of the organization as in
Farrell and Scotchmer (1988) and Levin and Tadelis (2005), models of favor-trading
as in Hauser and Hopenhayn (2010), and of dynamic partnership rematching as
in McAdams (2011). This partnership aspect and the methods we use to derive
and analyze the steady state are the key features that distinguish our model from
other recent work on dynamic relational contracts such as Andrews and Barron
(2016).

Finally, Acemoglu and Wolitzky (2018) model a society as a population of agents
who can exert effort with positive externalities and who may be punished for
exerting low effort; some fraction of the population are elite types who are less
vulnerable to this punishment. The authors show that elites may nonetheless
prefer to receive equal punishments — so-called equality under the law — as
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this increases their joint effort which then increases the effort of non-elites. In
contrast to their model, ours features imperfect monitoring, which gives rise to an
equilibrium distribution of continuation payoffs and effort dynamics that underlie
the organizational design problem. Acemoglu and Wolitzky (2018) also assume
the existence of an explicit punishment technology, while incentives in our setting
are generated either by letting agents enjoy the public good without exerting effort
(respite) or by cutting off their access to the public good entirely (expulsion).

II. Setup

Time is continuous over an infinite horizon. At each moment there is a positive
measure of massless agents present in an organization. Agents, the members, are
indexed by a continuous variable i. Each agent is risk neutral and discounts the
future at rate r. A member who exits the organization receives a payoff of 0 from
that point forward, and thus the rule that specifies when to remove an agent from
the organization will be a key component of organization design. A flow of new
members ψ > 0 join the organization at each instant; this will generate turnover
of members while allowing us to use steady state methods.

While remaining in the organization, each agent receives a flow utility u which
will, in equilibrium, be generated by the collective actions of all members. For
now, we can assume u is a constant, exogenously determined flow payoff. At each
instant, each agent i chooses an effort level ei ∈ {H,L}, where we refer to choosing
H as working and L, shirking ; thus each agent i chooses a stream of effort levels,
which is a stochastic process (eit)t≥0. The flow cost of effort is c(eit), defined by
c(H) = c > 0 and c(L) = 0. Thus, high effort has a flow cost c > 0 and low effort
has no cost. An agent’s effort generates an output stream of contributions to the
common good given by a Brownian diffusion

(1) dXi
t = (µeit)dt+ dBi

t,

where we assume that µH − c > 0 > µL, so that high effort is efficient and low
effort is not.

The diffusion process Xi admits multiple interpretations. First, in some in-
stances, each agent’s output may be clearly delineated from others’; for example,
if each agent in a farming collective is responsible for an individual plot of land,
each agent’s output is clearly defined and can be monitored in isolation. Second,
even if output is not clearly delineated — agents may be working in groups and
their output jointly determined — the principal might have means of monitoring
individual agents’ efforts. Indeed, although we follow the convention of calling
Xi the output stream of agent i, it can also be interpreted as a stream of signals
about agent i’s unobserved effort. Third, agents might observe (signals of) one
another’s efforts and report these to the principal. For example, in ride-sharing
services, agents are randomly matched and observe noisy signals of their match’s
effort. With a large number of agents, repeated interactions are rare, and agents
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may be willing to truthfully report their signals to the principal.
Since agents with the same continuation utilities are essentially identical, we

suppress the index i whenever doing so does not create confusion. Below we
also speak of the agent with the understanding that we are focusing on a single
arbitrary member of the organization. A contract in this context specifies: (i) a
fixed flow utility u, (ii) a removal time τ and (iii) a recommended effort process
e. We consider permanent expulsion at τ . Also, an agent is free to leave the
organization at any point, but may not rejoin.

In order to implement a contract, the principal assigns each agent a score or
reputation process, S. Each incoming agent begins with some initial reputation
level, and his reputation evolves thereafter according to his output stream. As
each agent is motivated solely by the evolution of his continuation payoff, the
designer may simply set the reputation process S for each agent equal to his
continuation payoff process W . In particular, (i) an agent is removed from the
organization when his reputation reaches w = 0, (ii) new agents are granted a
continuation payoff of w0 > 0, and (iii) since flow payoffs are bounded above and
agents discount the future, there is some maximum attainable reputation level w∗.
The distribution of agents at each instant thus is characterized by a population
distribution over continuation payoffs. We ultimately will allow the principal to
directly choose w0 and w∗ as a part of the organization design problem.

From standard results in continuous-time contracting,9 the following are known:

• While the agent remains in the organization (i.e., t ≤ τ), there exists a
process βt representing the sensitivity of the agent’s continuation value to
output:

dWt = rWtdt− (u− c(et))dt+ βt(dXt − µetdt).

• The contract is incentive compatible if and only if for all t ≤ τ and Wt ≥ 0,
et = H implies βt ≥ λ and et = L implies βt ≤ λ, where λ := c

µH−µL .

So long as the designer’s objective is increasing in effort,10 removing an agent is
inefficient (i.e., on path, agents are removed due to bad luck, not because they were
shirking at the moment). Therefore, the principal wishes to minimize volatility
and thus minimize the sensitivity βt subject to incentive compatibility for the
recommended effort level; it is optimal to set either βt = λ to induce working or
βt = 0 to induce shirking. Hence, when the agent works, his continuation value
evolves as

dWt = rWtdt− (u− c)dt+ λ(dXt − µHdt)
= (rWt − (u− c))dt+ λdBt.

(2)

9See DeMarzo and Sannikov (2006) Lemmas 2 and 3 or Zhu (2013) Lemmas 3.1 and 3.2.
10The designer’s objective may be increasing in effort either directly, if effort enters into the objective

function, or indirectly, if effort (of other agents) enters into agents’ value of being in the organization.
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When the agent shirks, his continuation value evolves deterministically as

(3) dWt = (rWt − u)dt.

In particular, the agent shirks whenever his reputation reaches its maximum level
w∗ < u/r, where the drift in (3) is necessarily downward.11 For later convenience,
we define ρ(w) := rw − u so that ρ(w∗) is the (downward) drift at w∗.

To summarize, the contract terms can be expressed in terms of (u,w0, w∗),
where an individual agent’s continuation value process W starts at w0, it evolves
according to (2) when Wt ∈ (0, w∗) and (3) when Wt = w∗, and the agent is
removed when Wt = 0. Formally, the process W belongs to a class of diffusions
known as Sticky Brownian Motion.12

A. Overview of Analysis

Now that the model has been presented, it is helpful to outline the four steps
we use to solve the organization design problem.

1) Determine agents’ law of motion: fixing contract terms (u,w0, w∗), we
characterize the evolution of the state variable — i.e., continuation utility —
for each agent as a stochastic process. This step has been performed above.

2) Find steady state distribution: we next determine a stationary distribution
for continuation utilities under the contract terms (u,w0, w∗), using the law
of motion above and taking into account the inflow and outflow of agents.

3) Determine feasibility : since agents in a collective organization exert exter-
nalities on one another, the flow payoffs u they earn must be consistent with
the steady state distribution of agents and their behavior. This requirement
determines a feasible set of organization parameters (u,w0, w∗) over which
the designer can optimize.

4) Optimize organization parameters: for a given objective function for the orga-
nization designer, we determine the optimal values of the design parameters
within the feasible set derived in the third step.

III. The Steady State

A steady state corresponds to a stationary distribution of agents over all pos-
sible levels of continuation payoff, as poorly performing agents drop out of the

11Recall that u/r is the value an agent would get by shirking yet remaining in the organization forever,
and is therefore an upper bound on continuation payoffs. Since we will pose the principal’s problem
directly in terms of a steady state distribution of agents, we cannot have w∗ = u/r; otherwise, the drift
in (3) would vanish for Wt = w∗, making w∗ an absorbing state, leading to an organization that grows
over time without bound.

12See Harrison and Lemoine (1981) and Zhu (2013).
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organization, new agents arrive, and as the continuation value of all agents within
the system evolve in response to their Brownian output streams. Essentially, a
stationary distribution is a distribution of agents’ continuation values in [0, w∗] in
the organization which is constant over time; any movement of agents away from
a particular continuation value (up or down) is exactly offset by movement toward
that continuation value by other agents. As we will be interested in the total mass
of agents in the organization as well as their distribution, we do not require that
the stationary distribution integrate to one. Mathematically, the steady state in
our setting is equivalent to a rescaling of the stationary distribution of a process
W defined on the interval [0, w∗] as follows:

• When Wt = 0, it immediately resets to w0.

• For Wt ∈ (0, w∗), it evolves as (2).

• For Wt = w∗, it evolves as (3).

In other words, the process undergoes resetting (as exiting agents are replaced
with new agents) and slow reflection (as agents at the top of the distribution are
permitted to shirk).13 The stationary distribution is scaled so that the flow rate
of mass at 0 is ψ, the inflow of agents into the organization.

Proposition 1 fully characterizes the distribution of continuation utilities in a
steady state for a given specification of the promised flow payoff u, the highest
achievable continuation utility w∗, and the level at which new agents are admitted
to the organization w0. The proof is given in the appendix.

Define γ(w) := rw−(u−c)
λ
√
r

and erf {x} := 2√
π

∫ x
0 e
−t2dt, the Gauss error function.

Proposition 1. In a steady state, the distribution of agents consists of two
densities f−, f+ and an atom ν{w∗} given by

• f−(w) = eγ(w)2 ψ
√
π

λ
√
r

[
erf
{
u−c
λ
√
r

}
+ erf {γ(w)}

]
for w ∈ [0, w0];

• f+(w) = eγ(w)2 ψ
√
π

λ
√
r

[
erf
{
u−c
λ
√
r

}
+ erf

{
γ(w0)

}]
for w ∈ [w0, w∗);

• ν{w∗} = λ2f+(w∗)
2(u−rw∗) .

In words, the distribution consists of a density function composed of two segments
(with a kink where they meet at w0) as well as a mass point at the top of the
support, w∗; Figure 1 illustrates.

We make several observations about the stationary distribution. In discrete
time, the continuation value of each agent follows a random walk. At generic
states w /∈ {0, w0, w∗}, agents “leaving” the continuation value w are immediately
replaced by agents moving up from w − dw or down from w + dw. In continuous

13A combination of resetting and (partial) reflection arises Kolb (2019), where the underlying process
is a seller’s reputation.
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w
w0 w∗

f−(w) f+(w)

Figure 1. : Steady state distribution of agents (omitting the atom at w∗).

time, this is stated by the Kolmogorov forward equation (A1), which implies the
functional form for the densities f−(w) and f+(w) up to two constants. The
difference in slopes at the kink at w0 is due to the exogenous inflow of new agents
and must match the outflow of agents at w = 0.

The third item of Proposition 1 is the most important economically. First, note
that there is a strictly positive measure of agents at w∗ who are shirking; since
the process W is a sticky Brownian motion, there is a positive measure of times
t at which Wt = w∗, and thus the stationary distribution involves an atom of
mass at exactly w∗. This means that there is a nontrivial fraction of agents in the
organization who are shirking at any time. Second, the size of this atom ν{w∗}
is proportional to the “stickiness” u− rw∗ of the process at w∗. The greater the
maximum continuation value w∗, the more “frequent” the shirking reward must
be delivered to sustain it (the continuation value process is stickier at w∗), and
thus the larger the measure of agents who are shirking in a steady state.

Given the steady state for exogenous organization design parameter values
(u,w0, w∗), the question now is what values the principal can and should set.

IV. Feasibility of Organizations

Prior to this point it has sufficed to interpret u as an exogenous flow payoff that
the principal can promise the agents. In this section, we endogenize this flow payoff
by imposing the feasibility constraint that the principal can only promise what
flow value the organization itself produces. We obtain, in closed form, a sufficient
condition and a necessary condition for the existence of a feasible organization.
Moreover, we characterize the way in which feasibility depends on the organization
design parameters, and provide further qualitative results about the set of feasible
organizations.

To capture in a tractable model the feature that working agents impose positive
externalities on the platform and shirking agents impose negative externalities,
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we specify that the flow payoff each agent receives is the average output of all the
other agents. We offer two interpretations for such payoffs. One interpretation is
that all agents contribute their efforts high or low to a common good which gets
divided evenly among all agents in the organization, and thus agents obtain a flow
value equal to the average flow output of its members. A second interpretation is
that agents in the organization are randomly and instantaneously matched with
one another, and agents obtain a flow value equal to the output of their partner.
In expectation, each agent receives the weighted average output of other agents.

Since the average output of all agents is a function of the mass of working
agents and mass of shirking agents, and those masses are in turn functions of the
promised flow payoff u, the latter is now a fixed point.

We now formally analyze feasibility. Define the measure of agents active (i.e.,
working) in a steady state by

α(u,w0, w∗) :=

∫ w0

0
f−(w) dw +

∫ w∗

w0

f+(w) dw,

and (with some abuse of notation) define the measure of non-active (i.e., shirking)
agents at the top of the distribution by

ν(u,w0, w∗) := ν{w∗}.

Denote the fraction of agents working by

Q(u,w0, w∗) :=
α(u,w0, w∗)

α(u,w0, w∗) + ν(u,w0, w∗)
.(4)

The endogenous flow utility produced when fraction Q = Q(u,w0, w∗) of agents
are working is thus the average output,

U(Q) := QµH + (1−Q)µL.(5)

where working agents contribute µH and shirking agents contribute µL.

In order to define feasibility, we state two conditions:

0 < w0 ≤ w∗ < u/r(6)

U(Q(u,w0, w∗)) = u.(7)

Definition 1. An organization (u,w0, w∗) is feasible if (6) and (7) are satisfied.

The key part of Definition 1 is the fixed point condition u = U(Q(u,w0, w∗)).
This condition says that the flow payoff that each agent receives, which the
principal has exogenously promised, must equal the flow payoff generated by the
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organization. Condition (6) says that u must be positive, otherwise agents would
be better off leaving the organization (individual rationality) than working at all.
Moreover, w∗ < u

r because the highest level of continuation utility can at most
equal the perpetuity value of shirking forever (and as noted earlier, if w∗ = u/r,
w∗ becomes an absorbing state). We denote by S the set of feasible organizations.

A. Existence and Nonexistence

Since an organization design (u,w0, w∗) is feasible only if u is generated by
the agents in the organization, a feasible organization need not exist. The next
proposition ensures that when agents are sufficiently patient, when the cost of
effort is sufficiently low, or when effort produces sufficiently high output, a feasible
organization exists; that is, there exists a triple (u,w0, w∗) that satisfies (6) and
(7).14 Note that in the extreme case, if agents were perfectly patient, the principal
could sustain an arbitrarily large organization with an arbitrarily large fraction of
agents working; in that case, the prospect of expulsion alone would incentivize
agents to work.

Define

r∗ :=
2(µH − µL)2

c

(
c+ µH − 2µL − 2

√
(c− µL)(µH − µL)

)
.(8)

Proposition 2. If r ∈ (0, r∗), then the feasible set is nonempty. The cutoff r∗

is increasing in µH and decreasing in c, and it satisfies lim|µH−c|→0 r
∗ = 0 and

limµH→∞ r
∗ = limc→0 =∞.

It is easy to verify that the threshold (8) is homogeneous of degree two in
(µH , µL, c), and thus the requirement on agents’ patience relaxes when these
parameters increase by a common multiplicative factor. This fact leads to a model
prediction that struggling organizations could benefit from assigning agents tasks
of greater importance, for which effort is more difficult but also easier to monitor
as the difference between success and failure is larger.

Conversely, we show that an organization cannot be sustained if agents are
sufficiently impatient. The intuition for this is straightforward. Each agent is
motivated to exert high effort by the threat of eventual removal and by the promise
of eventual vacation. As he becomes very impatient, the prospect of future sticks
and carrots lose their salience, and it becomes impossible to incent high effort.
Put another way, when agents become extremely impatient, the principal must
reward them with more frequent vacations, but this reduces the overall output of
the organization, and eventually there is no positive wage that the principal can
promise based on the organization’s output.

14Given Proposition 2, whenever we state results which condition on the feasible set being nonempty,
it should be understood that this condition applies for a nonempty set of input parameter values.
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The following proposition gives a sufficient condition for nonexistence in closed
form. For a fixed discount factor, nonexistence obtains when the cost of effort is
sufficiently large or the value of high effort is sufficiently small.15

Proposition 3. If r > 2µH(µH−c)
λ2

, there is no feasible organization.

Note, however, that while the organization must induce a positive flow wage u
to prevent all agents from leaving, that wage can be less than c — agents may
receive a negative net flow payoff while in the working state, yet prefer to remain
in the organization to obtain a positive net flow payoff while enjoying respite. In
other words, agents might be “working for the weekend” in the sense that the
only instances at which they receive more flow utility being in the organization
than out of it are those when they are not working.

Proposition 4. For a nonempty set of parameter values, there exists a feasible
organization (u,w0, w∗) with u < c.

B. Characterizing the Feasible Set

Having established that the set of feasible organizations can be nonempty, we
turn to characterizing this set. As an intermediate step, it is useful to consider
a fixed promised utility u and characterize the set of (w0, w∗) pairs such that
(u,w0, w∗) satisfies (6) and U(Q(u,w0, w∗)) ≥ u; in other words, it is the set of
organizations whose output is at least u when agents receive flow payoff u. We
call this the u-supportive set and denote it by Su.16

Consider the effect of marginally increasing w0 for fixed values of w∗ and u
subject to (6); the principal implements such a change through later expulsion
of agents in a stochastic sense. Since agents enter the organization with higher
continuation values, a greater mass of agents in steady state reside at continuation
values above w0, which means there are both more agents in the interval (w0, w∗)
who are working and more agents at w∗ who are shirking; that is, both α and ν
are increasing in w0. While it is immediately clear that the organization becomes
larger, these forces affect the average output of the organization in opposite
directions. We show analytically that the increase in shirking dominates, so that
the fraction of agents working unambiguously decreases in w0. This observation
implies that the u-supportive set lies below some curve w̄0(w∗) in (w∗, w0)-space,
defined for w∗ in a subset of (0, u/r).

Next, consider fixing u and w0 while marginally increasing w∗, a change which
is implemented by allowing agents to shirk more. This change has no effect on the
steady state distribution of agents below w∗, but it expands the distribution to the
right, increasing the mass of agents working. The effect of increasing w∗ on the

15Recall that we have assumed µL < 0, so that low effort is inefficient. Without this assumption, there
would always exist an (uninteresting) organization in which all agents shirk.

16For visual depictions of the u-supportive set, it is convenient to place w∗ on the horizontal axis and
w0 on the vertical axis.
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fraction of agents shirking is ambiguous; we show that the latter is quasiconcave
in the former. For small w∗, say very close to w0, increasing w∗ can improve
the average effort in the organization by delaying the time at which new agents
get to shirk. On the other hand, as w∗ increases, agents must spend a greater
amount of time shirking at w∗ — the reflecting barrier at w∗ becomes stickier,
and this eventually outweighs the increase in the mass of working agents. This
quasiconcavity implies that the horizontal cross sections of the u-supportive set
are intervals.

Finally, we note that a “wedge” always exists between the bottom left of the
u-supportive set and the 45-degree line. In other words, when new agents start at
very low continuation values and are highly likely to be expelled in the very near
future, the designer must force them to work for some time before earning respite,
or else the output of the organization will not exceed the promised wage.

Figure 2 shows the u-supportive set for a fixed value of u.

Proposition 5. There exist u, u ∈ (0, µH) such that if u < u or u > u, the
u-supportive set is empty. When it is nonempty, the u-supportive set for any
u ∈ (0, µH) can be written as {(w∗, w0) ∈ R2

+ : w0 ∈ (0, w̄0(w∗)]}, where w̄0 is a
single-peaked function taking values in [0, w∗]. If w∗ is such that w̄0(w∗) < w∗, then
w̄0 is continuously differentiable at w∗. For sufficiently small w0 > 0, w∗ > w0

whenever (w∗, w0) is in the u-supportive set.

From the definitions, if an organization (u,w0, w∗) is feasible, then (w0, w∗)
is u-supportive. Though not immediate from the definition, a converse to this
statement is also true, as reported in the following proposition. The value of these
facts are that the u-supportive sets fully determine the feasible set, which aids us
in solving the principal’s problem in the next section.

Proposition 6. An organization (u,w0, w∗) is feasible if and only if (w0, w∗) is ũ-
supportive for some ũ ∈ (0, µH). Hence, S = {(ũ, w0, w∗) : (w0, w∗) ∈ Sũ and ũ ∈
(0, µH)}. There is a nonempty set of parameter values such that w0 < w∗ for all
(u,w0, w∗) ∈ S and S is nonempty.

The last part of the proposition says that for some parameter settings, the
principal must force agents to wait some time before enjoying respite in order to
create a feasible organization; in other words, all the u-supportive sets lie below
the 45-degree line. We provide a sufficient condition, in closed form, on parameter
values for this to be the case.

Armed with the results of this section, we turn to the principal’s problem of
choosing among feasible organizations to maximize one of two possible objective
functions.

V. The Principal’s Problem(s)

We now analyze the problem of a principal who seeks to design an organization to
maximize an objective V (u,w0, w∗) over the set of feasible organizations. We focus
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w∗

w0

Figure 2. : A projection of the feasible set (light blue) overlayed with a u-supportive
set (light red) for (µH , µL, c, r, ψ) = (.5,−.5, .14, 1, 1) and u = .46. The dashed
line is the 45-degree line.

on two distinct objectives: maximizing the organization’s size and maximizing per
capita output.

A. Maximizing Organizational Size

Suppose the organization designer wishes to maximize the total size of the
organization. For example, a social networking website might want to attract
as many users as possible in order to maximize advertising revenue; whether
those users are engaging in high quality interactions with each other is of lesser
importance, conditional on their willingness to keep using the platform. The
designer’s problem is to maximize V (u,w0, w∗) = α(u,w0, w∗) + ν(u,w0, w∗)
subject to (6) and (7).

By Proposition 6, this problem can be solved in a two-step optimization, with
the principal first picking an arbitrary u ∈ (0, µH) and optimizing the size of the
organization within the u-supportive set, and then (working backwards) optimizing
over u. As argued in the previous section, both α and ν are increasing in both w0

and w∗ within the u-supportive set for any u. Hence, a solution to the first step
must lie on the northeastern frontier of the u-supportive set.

In case parameter values are in the set described by the last statement of
Proposition 6, any such solution must lie on the interior of this northeastern
frontier. To see this, note that the designer can trade off a marginal reduction
in w0 for a (relatively) arbitrarily large increase in w∗. In other words, if the
u-supportive set lies below the 45-degree line, the top of this set is flat, and the
indifference curve for organizational size which intersects the top of the feasible
set must cut into the feasible set, so there exist other points in the u-supportive
set which yield a larger organizational size. This implies that if (u,w0, w∗) is a
size-maximizing organization, (w0, w∗) does not lie at the top of the union of Su.
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Intuitively, the principal finds it worthwhile to limit the lifetime value promised
to incoming agents by increasing the performance demands on these agents for
earning respite; the resulting increase in the fraction of agents working “buys” the
principal the ability to more significantly increase the size of the organization by
providing later, but more frequent, respite.

In the second step of the optimization, the principal faces a trade-off, as the
u-supportive sets vanish as u becomes sufficiently small or sufficiently large. Hence,
any optimal u lies in [u, u] as defined in Proposition 5.

Proposition 7. If the feasible set is nonempty, there exists a feasible organization
which maximizes total size across all feasible organizations, and it lies on the
northeastern frontier of its u-supportive set.

That the u-supportive sets vanish as u becomes sufficiently small highlights
a tension facing the principal between organizational size and feasibility. To
illustrate this point, consider a fixed (w0, w∗) pair and vary the flow payoff u
exogenously. The lemma below implies that unambiguously, a principal seeking to
maximize the organization’s size benefits from reducing the payoff u. Effectively,
reducing this payoff puts upward pressure on the drift of agents’ continuation
values, as expressed in (2). This results in later expulsion of agents and a larger
organization overall. However, as the discussion above demonstrates, eventually
the average output of the organization deteriorates as the proportion of working
agents decreases.

Lemma 1. For 0 < w0 ≤ w∗ < u/r, f− and f+ are decreasing in u, pointwise
w.r.t. w, and both α and ν are decreasing in u. Hence, total organizational size is
decreasing in u.

An implication of this result is that if the principal’s goal is to maximize the
organization’s size, then whenever the principal is faced with multiple fixed point
values of u for a given (w0, w∗), the principal should choose to implement the
lowest of these fixed points. In the next section, we consider an objective function
of the principal where the opposite is true.

B. Maximizing Per Capita Output

We now consider a designer whose objective is to maximize steady state output
per capita. For example, the designer could be the leader of a research lab who is
in continual need of assistants to perform specialized tasks. Resources and credit
for publications or discoveries must be shared with each member of the team, and
therefore the designer’s first order concern is the average effort level, not how
many people join the team.

Formally, the designer’s problem is

max
(u,w0,w∗)∈S

Q(u,w0, w∗)µH + (1−Q(u,w0, w∗))µL
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subject to (6) and (7), which is equivalent to maximizing Q(u,w0, w∗), or simply
u, over the set of feasible organizations.

So that the problem is nontrivial, suppose that the feasible set is nonempty, and
consider a particular u such that the u-supportive set is nonempty. By Lemma A.2,
the per-capita output of the organization is strictly decreasing in w0, so for any
fixed w∗, the principal would like to set w0 arbitrarily close to 0. Consequently,
the organization will have virtually no agents. Since we do not allow w0 = 0, there
is an open set problem, which we circumvent by characterizing the supremum of
per-capita output over the set of feasible organizations with w0 > 0. We can then
identify sequences of organizations for which per-capita output converges to this
supremum.

It is useful, then, to consider the limit functionQ0(u,w∗) := limw0→0Q(u,w0, w∗),
which is an upper bound on Q(u,w0, w∗) for w0 > 0. We show that this function,
like Q(u,w0, w∗) for w0 > 0, is single-peaked in w∗, and we denote its unique max-
imizer by w∗PC(u). Hence, for fixed u, the sequence of average output associated
with any sequence of u-supportive (w0, w∗) converging to (0, w∗PC(u)) converges
to the supremum over Su of Q(u,w0, w∗). It is worth emphasizing that despite
the fact that w0 → 0, Q(u,w0, w∗) remains bounded away from 1; although new
agents become arbitrarily unlikely to reach the shirking state before being removed
from the organization, a positive fraction of agents remain shirking.

Next, we identify the optimal u. Since the objective is to maximize the fixed
point u itself, it is enough to find the supremum, denoted uPC , of the set of u such
that U(Q0(u,w∗PC(u))) > u. Although uPC itself is not attainable in a feasible
organization — this would require w0 = 0 which is not permitted — uPC can be
approximated arbitrarily closely by a sequence of feasible organizations. These
results are summarized in the following proposition.

Proposition 8. If the feasible set is nonempty, then there exists a unique triple
(uPC , w

0
PC , w

∗
PC) = (uPC , 0, w

∗
PC) with the following properties: (i) uPC is the

supremum of the per capita output across all feasible organizations, and (ii) the
designer can approximate uPC arbitrarily closely by choosing feasible organiza-
tions arbitrarily close to (uPC , w

0
PC , w

∗
PC). However, approximating uPC requires

organizations to be made arbitrarily small.

It is noteworthy that there is a unique (limiting) organization design which
maximizes per capita output, but the principal must heavily sacrifice the organi-
zation’s size to attempt to implement it. The reason is that the organization most
effectively limits the fraction of agents shirking by starting agents at extremely
low continuation values; this ensures that they are very unlikely to earn the
opportunity to shirk before being expelled from the organization. This result is
reminiscent of partnership organizations in which senior (i.e., vested) partners
recruit junior colleagues on the lowest rung of the ladder and promote virtually
none of them. Interestingly we find that such an organization is itself very small in
steady state, as partners trade off the size of the organization in order to maintain
a high percentage of hard-working juniors.
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VI. Discussion

We have proposed a model of organization design in which there is a large number
of small agents, whose efforts exert positive externalities but whose interactions
are such that high effort can only be incentivized through a central reputation
system. Absent transfer payments, agents must be permitted to shirk in some
instances after good performance. Under the Brownian monitoring (or output)
technology, this implies that agents’ continuation values follow a sticky Brownian
motion. Using techniques in stochastic calculus, we characterize the steady state
of the organization as a stationary distribution over continuation values. Finally,
we frame the social planner’s optimization problem in terms of the steady state
distribution, where she optimizes the design parameters subject to a feasibility
constraint. We identify a fundamental trade-off between the size and feasibility of
the organization, mediated by the mass of shirking agents.

Our model could also be extended to capture other aspects of real world
organizations. For example, we have assumed an exogenous inflow rate of new
agents, but one could endogenize the inflow rate, say, to be an increasing function
of the starting payoff w0. We have also assumed that no agents voluntarily leave
the organization, but there are several ways that agents could leave an organization
in practice. Agents might have idiosyncratic shocks that force them to seperate
from the organization, independent of their continuation values; we conjecture
that this would simply increase the effective discount factor of agents, and would
reduce the size of the feasible set. A more substantively different possibility would
be to give agents a positive outside option; this would put a positive lower bound
on continuation values and would also restrict the feasible set.
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Appendix

A1. Proofs for Section III

In this section we derive the stationary distribution. In Lemma A.1, we show
that the densities must satisfy a standard Kolmogorov forward equation along with
a set of boundary conditions. While stationary distributions and their boundary
conditions have been treated in numerous texts (for example, see Karlin and Taylor
(1981), Gardiner (2009)), we are unaware of an existing result that is sufficiently
general to take “off the shelf” by accommodating the sticky reflection, resetting
barrier and form of drift for our continuation value process, so we provide a full
derivation here which adapts the approach of Harrison and Lemoine (1981).

For future reference, we state the Kolmogorov forward (or Fokker-Planck)
equation

rf(w) + (rw − (u− c))f ′(w) =
λ2

2
f ′′(w)(A1)
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and define the general form of its solution up to two arbitrary constants as follows:

(A2) f(w) = eγ(w)2 (C1 + C2erf {γ(w)}) ,

where the functions γ and erf were defined in Section III.

Lemma A.1. The steady state distribution of agents is characterized by an atom
ν{w∗} and piecewise densities f− and f+ of the form (A2) defined on (0, w0] and
[w0, w∗), respectively, subject to the following boundary conditions:

1) f−(0) = 0.

2) f−(w0) = f+(w0).

3) f ′−(0+) = f ′−(w0−)− f ′+(w0+).

4) λ2

2 f+(w∗−) + ρ(w∗)ν{w∗} = 0.

5) λ2

2 f
′
−(0+) = ψ.

Proof of Lemma A.1. We follow the approach in Harrison and Lemoine (1981, pp.
220-221) who derive the stationary distribution for a sticky Brownian motion with
constant (negative) drift on [0,∞) and sticky reflection at 0; the main modifications
are to account for the resetting barrier and state-dependent drift. The infinitesimal
generator of the W process is the operator Γ defined by

Γh(w) = lim
dt↓0

Ew[h(Wdt)]− h(w)

dt
.

For all w > 0 and functions h in a suitable domain, the above limit is well-defined
and takes values

Γh(w) =

{
(rw∗ − u)h′(w∗) if w = w∗

(rw − (u− c))h′(w) + λ2

2 h
′′(w) if w ∈ (0, w∗).

In particular, the above is valid for all h such that h is twice continuously
differentiable and bounded and that Γh(w) is continuous, including at w∗. For
w = 0, the generator is not defined since the jump from 0 to w0 is instantaneous.
For convenience, define µ(w) := rw − (u− c) and recall that ρ(w) := rw − u.

Now a measure ν is a stationary distribution on [0, w∗] for W if and only if for
all t ≥ 0 and all admissible h, we have∫

[0,w∗]
h(w)ν(dw) =

∫
[0,w∗]

Ew[h(Wt)]ν(dw).(A3)

Essentially, this condition says that any statistic of a stationary distribution is
unchanging over time. In order to characterize a steady state distribution, we
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want to transform the right side of the above expression into terms involving only
h′′(w) and h′(w∗). Now we must have and ν{0} = 0 since otherwise the outflow
of agents would be of higher order than the inflow. Hence, expanding the right
hand side using Ito’s formula, restricting the integral to w ∈ (0, w∗] so that the
generator is defined, we have∫

[0,w∗]
Ew[h(Wt)]ν(dw) =

∫
(0,w∗]

h(w) + Ew

∫ t

0
Γh(Ws)ds+

∑
0<s≤t

∆h(W )s

 ν(dw)

where ∆h(W )s := h(Ws)− h(Ws−) for s > 0. Subtracting the left hand side of
(A3) from this, we have

0 =

∫
(0,w∗]

Ew

∫ t

0
Γh(Ws) ds+

∑
0<s≤t

∆h(W )s

 ν(dw)

=

∫
(0,w∗]

Ew
[∫ t

0
Γh(Ws) ds

]
ν(dw) +

∫
(0,w∗]

Ew

 ∑
0<s≤t

∆h(W )s

 ν(dw).

Dividing through by t and taking limits as t→ 0 yields

0 =

∫
(0,w∗]

Γh(w)ν(dw) + lim
t→0

1

t

∫
[0,w∗]

Ew

 ∑
0<s≤t

∆h(W )s

 ν(dw)

=

∫
(0,w∗]

Γh(w)ν(dw) +
λ2

2
f ′−(0)(h(w0)− h(0)).

(A4)

To obtain the second term of (A4), note that ∆h(W )s > 0 only when Ws− =
limt→sWt = 0, and in these cases we have ∆h(W )s = h(Ws) − h(Ws−) =
h(w0)− h(0). To a first order approximation, the second term of (A4) is thus the
expectation, over starting points w, of the size of a single jump, h(w0) − h(0),
times the probability that the process starting from w reaches 0 (the probability
of 2 or more jumps may be ignored since once the process resets at w0 it is very
far away from 0). After taking the limit, the second term above is h(w0)− h(0)
times the flow rate of mass hitting 0, which is λ2f ′−(0+)/2.
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The first term of (A4) can be expanded as∫
(0,w∗)

[
µ(w)h′(w) +

λ2

2
h′′(w)

]
ν(dw) + ρ(w∗)h′(w∗)ν{w∗}

=

∫
(0,w∗)

µ(w)h′(w)ν(dw) +

∫
(0,w∗)

λ2

2
h′′(w)ν(dw) + ρ(w∗)h′(w∗)ν{w∗}.

(A5)

We now focus on the first term of (A5). The integral can be split into two regions,
(0, w0) and [w0, w∗), where the stationary distribution has a density f± of the form

(A2). Then, by writing h′(w) = h′(w0)−
∫ w0

w h′′(y)dy = h′(w0) +
∫ w
w0 h

′′(y)dy, the
first term of (A5) is equivalent to

∫
(0,w0)

µ(w)

[
h′(w0)−

∫
(w,w0)

h′′(y)dy

]
f−(w)dw

+

∫
[w0,w∗)

µ(w)

[
h′(w0) +

∫
(w0,w)

h′′(y)dy

]
f+(w)dw

= h′(w0)

∫
(0,w∗)

µ(w)ν(dw)−
∫

(0,w0)

[∫
(0,w)

µ(y)f−(y)dy

]
h′′(w)dw

+

∫
[w0,w∗)

[∫
[w,w∗)

µ(y)f+(y)dy

]
h′′(w)dw.

Substituting the above into (A5), the first term of (A4) becomes

∫
(0,w∗]

Γh(w)ν(dw) =

∫
(0,w0)

h′′(w)

[
λ2

2
f−(w)−

∫
(0,w)

µ(y)f−(y)dy

]
dw

+

∫
[w0,w∗)

h′′(w)

[
λ2

2
f+(w) +

∫
[w,w∗)

µ(y)f+(y)dy

]
dw

+ h′(w0)

∫
(0,w∗)

µ(w)ν(dw)(A6)

+ ρ(w∗)h′(w∗)ν{w∗}.

The first two terms of (A6), having integrals involving h′′(w) as coefficients, are
all set. Take the last two terms of (A6) and add back in the second term on the
RHS of (A4) to write the RHS of (A4) as the sum of the first two terms of (A6)
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and

λ2

2
f ′−(0)(h(w0)− h(0)) + h′(w0)

∫
(0,w∗)

µ(w)ν(dw) + ρ(w∗)h′(w∗)ν{w∗}.(A7)

As noted, the goal is to transform the h involvement above into h′′ and h′(w∗)
terms. For the first term of (A7), integrate the derivatives twice and exchange
the order of integration to get

λ2

2
f ′−(0)(h(w0)− h(0)) =

λ2

2
f ′−(0)

∫ w0

0
h′(w)dw

=
λ2

2
f ′−(0)

∫ w0

0

[
h′(w∗)−

∫ w∗

w
h′′(y)dy

]
dw

=
λ2

2
f ′−(0)

(
w0h′(w∗)−

∫ w0

0

[∫ w∗

w
h′′(y)dy

]
dw

)
(A8)

=
λ2

2
f ′−(0)

(
w0h′(w∗)−

∫ w0

0
wh′′(w)dw −

∫ w∗

w0

w0h
′′(w)dw

)
.

For the second term of (A7), we have

h′(w0)

∫
(0,w∗)

µ(w)ν(dw) =

(
h′(w∗)−

∫ w∗

w0

h′′(y)dy

)∫
(0,w∗)

µ(w)ν(dw)

= h′(w∗)

∫
(0,w∗)

µ(w)ν(dw)−
∫ w∗

w0

h′′(w)

[∫
(0,w∗)

µ(y)ν(dy)

]
dw(A9)

where we have swapped w and y as variables of integration for later convenience.
Plugging (A8) and (A9) back into (A7) and adding back in the first two terms of
(A6), we can write (A4) as

0 = h′(w∗)M∗ +

∫
(0,w0)

h′′(w)M−(w)dw +

∫
[w0,w∗)

h′′(w)M+(w)dw,(A10)
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where we define

M∗ :=
λ2

2
f ′−(0)w0 +

∫
(0,w∗)

µ(w)ν(dw) + ρ(w∗)ν{w∗},

M−(w) := −λ
2

2
f ′−(0)w +

λ2

2
f−(w)−

∫ w

0
µ(y)f−(y)dy,

M+(w) := −λ
2

2
f ′−(0)w0 +

λ2

2
f+(w) +

∫ w∗

w
µ(y)f+(y)dy −

∫
(0,w∗)

µ(y)ν(dy).

Equation (A10) is exactly what we are after. It allows us to completely char-
acterize the steady state distribution. Specifically, because h′(w∗) and h′′(w) are
completely free (up to the differentiability conditions), the expressions attached
to them must all vanish:

M∗ = 0

M−(w) ≡ 0

M+(w) ≡ 0.

Equation (A10) has several implications. First, from M ′′−(w) = 0 and M ′′+(w) = 0,
we recover the Kolmogorov forward equation (A1) on the left and right pieces. In
addition,

1) M−(0+) = 0 implies f−(0+) = 0

2) M−(w0) = M+(w0) implies f−(w0) = f+(w0)

3) M ′−(w0−) = M ′+(w0+) implies f ′−(0+) = f ′−(w0−)− f ′+(w0+)

4) M∗ +M+(w∗) = 0 implies λ2

2 f+(w∗−) + ρ(w∗)ν{w∗} = 0.

Finally, since the outflow of agents must equal the inflow, we have the condition
λ2

2 f
′
−(0+) = ψ which pins down the scale of the distribution.

Proof of Proposition 1. By Lemma A.1, the steady state distribution of agents
can be described by the densities f±(w) = eγ(w)2(C±1 + C±2 erf {γ(w)}) and an
atom ν{w∗} subject to the stated constraints.

As f−(0) = 0, we have:

0 = e
(u−c)2

λ2r

(
C−1 + C−2 erf

{
−(u− c)
λ
√
r

})
Because the error function has odd symmetry, this means that

C−1 − C
−
2 erf

{
u− c
λ
√
r

}
= 0
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Knowing too that f ′−(0) = 2ψ
λ2

, and by differentiating f−(w), we get:

2ψ

λ2
= 2γ(0)γ′(0)eγ(0)2

(
C−2 erf

{
u− c
λ
√
r

}
+ C−2 erf {γ(0)}

)
+ eγ(0)2C−2 γ

′(0)erf ′{γ(0)}

= 2eγ(0)2C−2 γ
′(0)

e−γ(0)2

√
π

=
2C−2
√
r

λ
√
π

=⇒ C−2 =
ψ
√
π

λ
√
r
.

Thus the lower segment of the distribution function is

(A11) f−(w) = eγ(w)2
(
ψ
√
π

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf {γ(w)}

])
.

Since f−(w) and f+(w) must agree at w0, we set the lower and upper f functions
equal at w0 to get

f+(w0) = f−(w0) = eγ(w0)2
(
ψ
√
π

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}])
= eγ(w0)2(C+

1 + C+
2 erf

{
γ(w0)

}
)

and thus, by rearranging terms, we find that

C+
1 =

ψ
√
π

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
− C+

2 erf
{
γ(w0)

}
.

Therefore,

f+(w) =

eγ(w)2
(
ψ
√
π

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
− C+

2 erf
{
γ(w0)

}
+ C+

2 erf {γ(w)}
)

and, differentiating both f+(w) and f−(w), we get

f ′+(w) = 2γ(w)γ′(w)f+(w) + eγ(w)2C+
2 erf ′{γ(w)}γ′(w)

and

f ′−(w) = 2γ(w)γ′(w)f−(w) +
ψ
√
π

λ
√
r
eγ(w)2erf ′{γ(w)}γ′(w).
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Because f ′−(0+) = f ′−(w0−)− f ′+(w0+), it must be that

C+
2 =

ψ
√
π

λ
√
r

[
eγ(w0)erf ′{γ(w0)}γ′(w0)− eγ(0)2erf ′{γ(0)}γ′(0)

]
eγ(w0)2erf ′{γ(w0)}γ′(w0)

= 0

Thus, the upper segment of the distribution function is

(A12) f+(w) = eγ(w)2 ψ
√
π

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
Finally, completing the derivation of the distribution of agents in the steady

state, the mass of agents at w∗, ν{w∗}, satisfies

ν{w∗} =
λ2f+(w∗)

2(u− rw∗)
.

A2. Proofs for Section IV

Lemma A.2. For all fixed u,w∗ such that 0 < w∗ < u/r and all w0 ∈ (0, w∗],
both α(u,w0, w∗) and ν(u,w0, w∗) are increasing in w0 and Q(u,w0, w∗) is strictly
decreasing in w0.

Proof. We have Q = α
α+ν = 1

1+ ν
α

which is decreasing iff ν
α is increasing, which

is true iff
νw0

ν >
αw0

α . Using X := u−c
λ
√
r

and Y := ψ
√
π

λ
√
r

and expanding, these

quantities are

ν =
λ2

2(u− rw∗)
f+(w∗) =

λ2

2(u− rw∗)
eγ(w∗)2Y (erf {X}+ erf {γ(w0)})

νw0 =
ψ

u− rw∗
eγ(w∗)2−γ(w0)2 > 0

α =

∫ w0

0
f−(w) dw +

∫ w∗

w0

f+(w) dw

=

∫ w0

0
eγ(w)2Y [erf {X}+ erf {γ(w)}] dw

+

∫ w∗

w0

eγ(w)2Y
[
erf {X}+ erf

{
γ(w0)

}]
dw
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αw0 =

∫ w∗

w0

eγ(w)2Y
2e−γ(w0)2

√
π

√
r

λ
dw

=
2
√
re−γ(w0)2

λ
√
π [erf {X}+ erf {γ(w0)}]

∫ w∗

w0

f+(w) dw > 0.

Define Z := 2
√
re−γ(w

0)2

λ
√
π[erf{X}+erf{γ(w0)}] > 0 to be the constant outside the integral of

the last expression. By canceling terms, we have
νw0

ν = Z, whereas

(A13)
αw0

α
= Z

∫ w∗
w0 f+(w) dw∫ w0

0 f−(w) dw +
∫ w∗
w0 f+(w) dw

< Z,

so we are done.

The next lemma implies that for any fixed w0 > 0, there is a single (possibly
empty) interval of w∗ values for which the organization is feasible.

Lemma A.3. For all fixed u,w0 such that 0 < w0 < u/r and for all w∗ ∈ [w0, u/r),
α(u,w0, w∗) is increasing in w∗ and Q is quasiconcave in w∗. In particular, Q is
eventually decreasing, and if Qw∗ = 0 for some value of w∗, then Qw∗ is decreasing
in w∗ at that point.

Proof. To abbreviate, we use prime notation to denote the derivatives with respect
to w∗, and as f+ and its derivatives are to be evaluated at w∗, we suppress

dependence on w∗. Immediately, we have α′ = f+ > 0, and from ν = λ2

2
f+

u−rw∗ we

have ν ′ = λ2

2

[
(u−rw∗)f ′++rf+

(u−rw∗)2

]
. Now Q = α

α+ν = g
(
ν
α

)
where g(x) := 1

1+x . Taking

derivatives, we have Q′ = g′
(
ν
α

) (
ν
α

)′
. Now Q is decreasing if and only if

(
ν
α

)′
> 0

which is equivalent to αν ′ − να′ > 0. Expanding yields

αν ′ − να′ = α
λ2

2

[
(u− rw∗)f ′+ + rf+

(u− rw∗)2

]
− λ2

2

f2
+

u− rw∗

=
λ2

2(u− rw∗)

{
α

[
f ′+ +

rf+

(u− rw∗)

]
− f2

+

}
.

Inside the braces, as w∗ → u/r, α and f+ have positive, finite limits and f ′+
has a finite limit, while α rf+

u−rw∗ → +∞. Hence the expression tends to +∞ as
w∗ → u/r, and in particular, it is positive for sufficiently large w∗. We conclude
that Q is eventually decreasing.

Next, suppose Q′ = 0, which is equivalent to αν ′ − να′ = 0. As noted above,
α′ > 0 and hence if Q′ = 0 we have ν ′ > 0. Further differentiation yields

Q′′ = g′′
(
ν
α

) [(
ν
α

)′]2
+ g′

(
ν
α

) (
ν
α

)′′
. Using Q′ = 0 and g′ < 0, we have Q′′ < 0 if
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and only if( ν
α

)′′
> 0 ⇐⇒ α2ν ′′ − ανα′′ > 2αα′ν ′ − 2ν(α′)2 ⇐⇒ ν ′′α′ > α′′ν ′.

where we have used that α = α′ νν′ to obtain the last inequality. We now establish
this last inequality. Differentiate v′ to obtain

ν ′′ =
λ2

2

[
(u− rw∗)3f ′′+ + 2r(u− rw∗)2f ′+ + 2r2(u− rw∗)f+

(u− rw∗)4

]
>
λ2

2

[
(u− rw∗)3f ′′+ + r(u− rw∗)2f ′+ + r2(u− rw∗)f+

(u− rw∗)4

]
>
λ2

2

[
(u− rw∗)f ′′+ + rf ′+

(u− rw∗)2

]
,

where in the first inequality we have used from v′ > 0 that (u− rw∗)f ′+ + rf+ > 0
and in the second inequality we have used (u− rw∗)f+ > 0. Recall that α′ = f+

and α′′ = f ′+, and thus a sufficient condition for our desired inequality ν ′′α′ > α′′ν ′

is

λ2

2

[
(u− rw∗)f ′′+ + rf ′+

(u− rw∗)2

]
f+ > f ′+

λ2

2

[
(u− rw∗)f ′+ + rf+

(u− rw∗)2

]
⇐⇒ f ′′+f+ > (f ′+)2.

Using f+(w∗) = eγ(w∗)2Y [erf {X} + erf
{
γ(w0)

}
] and (by definition) γ(w) =

rw−(u−c)
λ
√
r

, this inequality can be written as

[(2γγ′)2f+ + 2(γ′)2f+]f+ > (2γγ′)2(f+)2

which clearly holds. We conclude that Q′ = 0 implies Q′′ < 0, so Q is quasiconcave
in w∗.

Proof of Proposition 2. For any fixed w0 and w∗ with 0 < w0 ≤ w∗, α(u,w0, w∗)
and f+(w∗) (where dependence of the latter on u and w0 has been suppressed)

have finite limits as u ↓ rw∗, while ν = λ2

2(u−rw∗)f+(w∗)→ +∞, and thus

lim
u↓rw∗

Q(u,w0, w∗) = lim
u↓rw∗

α(u,w0, w∗)

α(u,w0, w∗) + ν(u,w0, w∗)

= 0.

In what follows, we show there exists w∗ ∈ (0, (µH − c)/r) such that for sufficiently
small w0, when u = rw∗ + c, output strictly exceeds u, and hence by the interme-
diate value theorem, there exists a fixed point u. Take w∗ ∈ (0, µH − c)/r) and



34 AMERICAN ECONOMIC JOURNAL MONTH YEAR

u = rw∗ + c ∈ (0, µH). Then

α(u,w0, w∗)|u=rw∗+c

=

∫ w0

0
Y exp(r(w − w∗)2/λ2)

[
erf

{√
rw∗

λ

}
+ erf

{√
r(w − w∗)

λ

}]
dw

+

∫ w∗

w0

Y exp(r(w − w∗)2/λ2)

[
erf

{√
rw∗

λ

}
+ erf

{√
r(w0 − w∗)

λ

}]
dw,

ν(u,w0, w∗)|u=rw∗+c =
λ2

2c
Y

[
erf

{√
rw∗

λ

}
+ erf

{√
r(w0 − w∗)

λ

}]
.

Now limw0↓0Q(rw∗ + c, w0, w∗) is of the form 0
0 , and by L’Hôpital’s rule,

lim
w0↓0

Q(rw∗ + c, w0, w∗) = lim
w0↓0

αw0(rw∗ + c, w0, w∗)

αw0(rw∗ + c, w0, w∗) + νw0(rw∗ + c, w0, w∗)
, where

αw0(rw∗ + c, w0, w∗) =

∫ w∗

w0

Y exp(r(w − w∗)2/λ2)
2
√
r

λ
√
π

exp(−r(w0 − w∗)2/λ2)

νw0(rw∗ + c, w0, w∗) =
λ2

2c
Y

2
√
r

λ
√
π

exp(−r(w0 − w∗)2/λ2).

Taking limits and simplifying, we obtain

lim
w0↓0

Q(rw∗ + c, w0, w∗) =

∫ w∗
0 exp(r(w − w∗)2/λ2) dw∫ w∗

0 exp(r(w − w∗)2/λ2) dw + λ2

2c

=: Q̂(w∗).

Next, we show that there exists w∗ ∈ (0, (µH − c)/r) such that

Q̂(w∗)µH + (1− Q̂(w∗))µL > u = rw∗ + c.(A14)

This inequality is equivalent to∫ w∗

0
exp(r(w − w∗)2/λ2) dw(µH − c− rw∗) +

λ2

2c
(µL − c− rw∗) > 0.

The integrand above is bounded below by 1, so the left hand side as a whole is
bounded below by

w∗(µH − c− rw∗) +
λ2

2c
(µL − c− rw∗),(A15)
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which can be written as g(w∗) where g(x) := Ax2 + Bx + c, A := −r, B :=

µH − c− λ2r
2c and C := λ2

2c (µL − c). Note that g is a concave quadratic function

with g(0) = λ2

2c (µL − c) < 0, and hence if g has any real roots, either both are
positive or both are negative. Moreover, both roots are positive if and only if their
sum is positive. Now g has real roots with a positive sum if and only if both of
the following conditions hold:

0 < B2 − 4AC =

(
µH − c−

λ2r

2c

)2

+ 4r
λ2

2c
(µL − c) and(A16)

0 < −B
A
⇐⇒ 0 < B = µH − c−

λ2r

2c
.(A17)

Using λ = c
µH−µL , these inequalities expand to, respectively,

0 <

(
µH − c−

cr

2(µH − µL)2

)2

+ 2
cr

(µH − µL)2
(µL − c) and(A18)

0 < µH − c−
cr

2(µH − µL)2
.(A19)

Collecting r terms, the right side of (A18) is a convex quadratic in r,

h(r) :=
c2

4(µH − µL)4
r2 +

(
−c2 + 2cµL − cµH

(µH − µL)2

)
r + (µH − c)2

with sign pattern +,−,+. It follows that h(0) > 0 and h′(0) < 0. The inequality
(A19) is equivalent to

r < r̄ :=
2(µH − c)(µH − µL)2

c
.

For r = r̄, the first term on the right side of (A18) vanishes while the second
term is negative, so h(r̄) < 0. It follows that h has two real roots, both positive.
Now h(r) is decreasing for all r ∈ [0, r̄] and in this interval, h(r) ≥ 0 if and only if
r < r∗, where r∗ is the lower of the two roots of h, given explicitly by (8). Hence,
for r < r∗, (A18) and (A19) hold, and therefore g has two positive roots.

It is easy to verify that g′(x)|x=(µH−c)/r < 0, and since g is concave, the two
roots of g must lie in (0, (µH − c)/r), which implies there exists w∗ in this interval
such that g(w∗) > 0. Retracing the earlier steps, (A14) holds for such w∗ and
hence by continuity there exists w0 ∈ (0, w∗) such that Q(u,w0, w∗)µH + (1 −
Q(u,w0, w∗))µL > u for u = rw∗ + c. By the intermediate value theorem, there
exists u ∈ (rw∗, rw∗ + c) such that average output under (u,w0, w∗) is exactly u,
and a feasible organization exists.
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We claim that r∗ is increasing in µH and decreasing in c. For µH it suffices to
show that the term c+ µH − 2µL− 2

√
(c− µL)(µH − µL) is increasing in µH . By

direct computation, its derivative w.r.t. µH is 1−
√
c−µL√
µH−µL

> 0 as µH > c. For c,

we have

∂

∂c
r∗ =

2(µH − µL)2

c2

(
−µH + 2

√
(c− µL)(µH − µL) + 2µL − c

µH − µL√
(c− µL)(µH − µL)

)

<
2(µH − µL)2

c2

(
−µH + 2

√
(c− µL)(µH − µL) + 2µL − c

)
=

4(µH − µL)2

c2

(√
(c− µL)(µH − µL)− (µH − µL) + (c− µL)

2

)
which is negative by applying the Arithmetic Mean–Geometric Mean inequality
to the pair of positive numbers (c− µL, µH − µL).

Now r∗ is continuous in (µH , µL, c) and vanishes when µH = c, giving the limit
result for |µH−c| → 0. As µH →∞, note that both the first factor and the second
factor are positive and tend to infinity as µH →∞. As c→ 0, the first factor tends

to +∞ and the second factor tends to
(

0 + µH − 2µL − 2
√

(0− µL)(µH − µL)
)
>

0, giving the last two limits in the proposition.

The following lemma shows the existence of a “wedge” in the graph of the
feasible set.

Lemma A.4. For all u ∈ (0, µH), for sufficiently small w0 > 0, w∗ > w0

whenever (w∗, w0) is in the u-supportive set.

Proof. We show that limw0→0Q(u,w0, w0) = 0. We haveQ(u,w0, w0) = α(u,w0,w0)
α(u,w0,w0)+ν(u,w0,w0)

and we show that limw0→0
α(u,w0,w0)
ν(u,w0,w0)

→ 0. Expanding,

lim
w0→0

α(u,w0, w0)

ν(u,w0, w0)
= lim

w0→0

∫ w0

0 f−(w) dw
λ2

2(u−rw0)
f−(w0)

=
limw0→0 f−(w0)

limw0→0
d
dw0 [ λ2

2(u−rw0)
f−(w0)]

.

The numerator has limit f−(0) = 0, while the denominator has limit

lim
w0→0

Y λ2

2
√
π(u− rw0)2

[
eγ(w0)2√πr

(
erf {X}+ erf

{
γ(w0)

})
+2(u− rw0)γ′(w0)

(
1 + eγ(w0)2√π

(
erf {X}+ erf

{
γ(w0)

})
γ(w0)

)]
=
ψ

u
> 0,
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where we have used that limw0→0

(
erf {X}+ erf

{
γ(w0)

})
= erf {X}+erf {−X} =

0. It follows that limw0→0
α(u,w0,w0)
ν(u,w0,w0)

= 0, as desired.

Lemma A.5. The limit Q0(u,w∗) := limw0→0Q(u,w0, w∗) is well-defined, and
Q0(u,w∗) is a differentiable, single-peaked function of w∗ which is maximized at
some w∗PC(u) ∈ (0, u/r). Moreover, Q0(u,w∗PC(u)) < 1.

Proof. As limw0→0Q(u,w0, w∗) is of the form 0/0, we use L’Hôpital’s rule. Using
the expressions from the proof of Lemma A.2,

lim
w0→0

Q(u,w0, w∗) = lim
w0→0

αw0(u,w0, w∗)

αw0(u,w0, w∗) + νw0(u,w0, w∗)

=

∫ w∗
0 eγ(w)2dw∫ w∗

0 eγ(w)2dw + λ2

2(u−rw∗)e
γ(w∗)2

=: Q0(u,w∗).

It is clear that Q0(u,w∗) is twice continuously differentiable. We argue that

Q0(u,w∗) is single-peaked in w∗, i.e., that ∂2Q0(u,w∗)
(∂w∗)2 < 0 whenever ∂Q0(u,w∗)

∂w∗ = 0.

Define α0(w∗) :=
∫ w∗

0 eγ(w)2dw and ν0(w∗) := λ2

2(u−rw∗)e
γ(w∗)2 , so that Q0(u,w∗) =

α0(w∗)
α0(w∗)+ν0(w∗) . By arguments in the proof of Lemma A.3, it is enough to show

that
ν′′0
ν′0
>

α′′0
α′0

whenever
(
ν0
α0

)′
= 0, i.e., whenever α0ν

′
0 = ν0α

′
0. Define f0(w∗) :=

eγ(w∗)2 . The rest of the proof of single-peakedness is then isomorphic to the proof
of Lemma A.3, since f0(w∗) is a positive constant multiple of f+(w∗) (since w0 > 0
in Lemma A.3).

Next, it is straightforward to verify that Q0(u, 0) = 0 and limw∗→u/rQ
0(u,w∗) =

0 and that Q0(u,w∗) > 0 for all w∗ ∈ (0, u/r), and since Q0(u,w∗) is single-peaked
in w∗, it attains its maximum on [0, u/r] at some unique w∗PC(u) ∈ (0, u/r). Finally,
it is clear from inspection that Q0(u,w∗) < 1 for all w∗ ∈ (0, u/r), so in particular,
Q0(u,w∗PC(u)) < 1.

Proof of Proposition 3. Suppose r > 2µH(µH−c)
λ2

. By Lemma A.2, if a feasible

platform exists, then a feasible platform exists for arbitrarily low w0 > 0. Fixing
u and w0, by Lemma A.3, the set of w∗ such that (w0, w∗) is u-supportive is
an interval [w,w]. By Lemma A.4, for sufficiently low w0 > 0, w > w0 which
implies that Q(u,w0, w) = Q(u,w0, w), and by Lemma A.3 there exists a unique
w∗ ∈ [w,w] such that ∂

∂w∗Q(u,w0, w∗) = 0, which implies αw∗ν = ανw∗ . At such
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a w∗, we have

Q(u,w0, w∗)

1−Q(u,w0, w∗)
=
α

ν
=
αw∗

νw∗
=

f+(w∗)
λ2

2(u−rw∗)2 [(u− rw∗)f ′+(w∗) + rf+(w∗)]

=
f+(w∗)2(u− rw∗)2

λ2[(u− rw∗)2γ(w∗)γ′(w∗)f+(w∗) + rf+(w∗)]

=
2(u− rw∗)2

2(u− rw∗)(rw∗ − (u− c)) + rλ2
.

The platform (u,w0, w∗) is not feasible if Q(u,w0,w∗)
1−Q(u,w0,w∗) <

u−µL
µH−u ; we now show this

inequality holds. Using the expression above this is equivalent to

2(u− rw∗)2

2(u− rw∗)(rw∗ − (u− c)) + rλ2
<
u− µL
µH − u

.(A20)

The denominator on the left hand side of (A20) must be positive, otherwise we
would have ν = 0 which is impossible with w∗ < u/r ≤ µH/r <∞. It follows that
(A20) is equivalent to

0 > 2(u− rw∗)2(µH − u)− [2(u− rw∗)(rw∗ − (u− c)) + rλ2](u− µL).(A21)

The right hand side above is a quadratic function of w∗ which is convex since it
has coefficient 2r2(µH − µL) > 0 on (w∗)2. Evaluated at w∗ = u/r, it simplifies
to −rλ2(u − µL) < 0. Evaluated at w∗ = 0, it simplifies to k(u) := 2u2[µH −
c − µL] + 2ucµL − rλ2(u − µL). We now show that k(u) < 0. Note that k is
a convex, quadratic function of u with k(0) = rλ2µL < 0. Moreover, k(µH) =
−(µH − µL)[rλ2 − 2µH(µH − c)] < 0 by assumption. Hence by convexity in w∗,
(A21) holds for all u,w∗ such that 0 < rw∗ < u < µH , completing the proof.

Proof of Proposition 4. Define χ := 2(µH−c)(µH−µL)2

e(µH−µL)2 (c−µL)+2(µH−c)(µH−µL)2
∈ (0, 1). We

show that in particular, if r < χ, there exists a feasible platform with u < c.
As in the proof of Proposition 2, limu↓rw∗ Q(u,w0, w∗) = 0 for all (w0, w∗) with
0 < w0 ≤ w∗, and hence for sufficiently small u > rw∗, we have µHQ(u,w0, w∗) +
µL(1−Q(u,w0, w∗) < u. Using u = c, we first establish the existence of (w0, w∗)
with 0 < w0 ≤ w∗ < u/r such that output strictly exceeds u. We have

α(u,w0, w∗)|u=c =

∫ w0

0
Y exp(rw2/λ2)

[
erf {0}+ erf

{√
rw

λ

}]
dw

+

∫ w∗

w0

Y exp(rw2/λ2)

[
erf {0}+ erf

{√
rw0

λ

}]
dw
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ν(u,w0, w∗)|u=c =
λ2

2(c− rw∗)
Y exp(r(w∗)2/λ2)

[
erf {0}+ erf

{√
rw0

λ

}]
.

Recall that a platform’s output exceeds u if and only if Q(u,w0,w∗)
1−Q(u,w0,w∗) >

u−µL
µH−u .

By the usual use of L’Hôpital’s rule, for u = c, we have

lim
w0↓0

Q(u,w0, w∗)

1−Q(u,w0, w∗)
=

∫ w∗
0 exp(rw2/λ2)dw
λ2

2(c−rw∗) exp(r(w∗)2/λ2)

=
2(c− rw∗)

λ2

∫ w∗

0
exp[r(w2 − (w∗)2)/λ2]dw.

Evaluating at w∗ = c/
√
r (which is less than u/r since r < 1), the last expression

becomes

2(c− c
√
r)

λ2

∫ c/
√
r

0
exp[(rw2 − c2)/λ2]dw,

which, using that r < 1, is bounded below by 2(c−c
√
r)

λ2
c√
r
e−c

2/λ2 = 2(1/
√
r −

1)(µH − µL)2e−(µH−µL)2 . Now this expression is strictly decreasing in r, and
comparing it to c−µL

µH−c and solving for r yields the sufficient condition stated; when

this condition holds, by continuity in w0, we have for sufficiently small w0 that
(w0, w∗) = (w0, c/

√
r) supports u with µHQ(u,w0, w∗) + µL(1−Q(u,w0, w∗) > u

for u = c. From this and the observation at the beginning of the proof about
u ↓ rw∗, the intermediate value theorem gives existence of u < c such that
µHQ(u,w0, w∗) + µL(1−Q(u,w0, w∗) = u, so we conclude there exists a feasible
organization exists with u < c.

Proof of Proposition 5. We must only prove the first claim, since the rest of the
proposition is a summary of Lemmas A.2, A.3 and A.4. First, observe that in
the proof of Proposition 3, no organization with flow payoff u is feasible if (A21)
holds for all w∗ ∈ (0, u/r). By the arguments there, the maximum value (over
w∗ ∈ (0, u/r)) of the RHS tends to a negative limit as u → 0, and hence by
continuity, there exists u ∈ (0, µH) such that for all u ∈ (0, u), no u-supportive
organization exists. To establish u, recall that if an organization is feasible, then
Q(u,w0,w∗)

1−Q(u,w0,w∗) ≥
u−µL
µH−u , and since Q is strictly decreasing in w0, it must be that

limw0→0
Q(u,w0,w∗)

1−Q(u,w0,w∗) ≥
u−µL
µH−u . Using now familiar calculations, for any u ∈ (c, µH),



40 AMERICAN ECONOMIC JOURNAL MONTH YEAR

the LHS of this inequality simplifies to

2(u− rw∗)
λ2

∫ w∗

0
eγ(w)2−γ(w∗)2dw

=
2(u− rw∗)

λ2

∫ w∗

0
exp

[
r(w + w∗)− 2(u− c)

λ
√
r

√
r(w − w∗)

λ

]
dw

≤ 2(u− rw∗)
λ2

∫ w∗

0
exp

[
2(u− c)(w∗ − w)

λ2

]
dw

≤ 2u

λ2
w∗ exp

[
2(u− c)w∗

λ2

]
≤ 2µH

λ2

µH
r

exp

[
2(µH − c)µH

rλ2

]
,

which is a finite bound independent of u. But as u → µH , u−µL
µH−u → ∞, so the

necessary condition fails. Hence there exists u ∈ (c, µH) such that the u-supportive
set is empty for all u > u.

Define r∗∗ : [0, 1]→ [0,∞) by

r∗∗(β) :=
(µH − c)2β

{
3(1− β)c+

√
3(1− β)c[c(1− β)(3 + 2β) + 2β(βµH − µL)]

}
3λ2[β(µH − c) + c− µL]

.

Note that r∗∗(β) > 0 for all β ∈ (0, 1). The following lemma provides an
alternative sufficient condition for existence; it can be optimized by choosing
β = arg maxβ̃∈[0,1] r

∗∗(β̃).

Lemma A.6. Fix any β ∈ (0, 1). If r < r∗∗(β), then a feasible platform exists.

Proof. The proof follows the proof of Proposition 2 through the step where we
have reduced the existence problem to establishing the inequality∫ w∗

0
exp(r(w − w∗)2/λ2) dw(µH − c− rw∗) +

λ2

2c
(µL − c− rw∗) > 0

for some w∗ ∈ (µH − c)/r. In deriving r∗∗(β), we use a sharper lower bound on
the integrand, but use a stronger sufficient condition in a later step. Specifically,
we have exp(r(w − w∗)2/λ2) ≥ 1 + r(w − w∗)2/λ2, and hence it suffices to show

0 < (µH − c− rw∗)
∫ w∗

0
[1 + r(w − w∗)2/λ2]dw +

λ2

2c
(µL − c− rw∗)

= w∗[1 + r(w∗)2/(3λ2)](µH − c− rw∗) +
λ2

2c
(µL − c− rw∗).
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Evaluating the expression above at w∗ = β(µH − c)/r and multiplying through by
r2 yields an inequality involving a quadratic in r:

−λ
2[β(µH − c) + c− µL]

2c
r2 + β(1− β)(µH − c)2r +

β3(1− β)(µH − c)4

3λ2
> 0.

The left hand size is strictly positive at r = 0 and is concave. Its unique positive
root is r∗∗(β), giving the result.

Define r̂ :=
(µH−µL)2

[
3(µH−µL)−

√
(µH−µL)(µH−9µL)

](
µH+3µL+

√
(µH−µL)(µH−9µL)

)2
8c2
[
(µH−µL)+

√
(µH−µL)(µH−9µL)

] ,

which is a positive real number as µH > µL.

Lemma A.7. If r > r̂, then any feasible platform involves w0 < w∗. Moreover,
there is a nonempty set of values for (µH , µL, c, r) such that r > r̂ holds while the
set of feasible platforms is nonempty.

Proof. We first show that for r > r̂, there is no feasible platform with w0 = w∗. Fix

any u ∈ (0, µH), and consider the function w0 7→ Q(u,w0, w0) =
∫ w0

0 f−(w)dw∫ w0

0 f−(w)dw+ν(w0)
.

From the proof of Lemma A.4, limw0→0Q(u,w0, w0) = 0. On the other hand,

taking w0 ↑ u/r,
∫ w0

0 f−(w)dw has a finite limit while ν(w0) = λ2f−(w0)
2(u−rw0)

↑ +∞, so

limw0↑u/rQ(u,w0, w0) = 0 as well. Now Q(u,w0, w0) attains its maximum at some

w0 ∈ (0, u/r) where the first order condition 0 = d
dw0Q(u,w0, w0) ⇐⇒ α =

ν dα
dw0
dν
dw0

reduces to

α =

∫ w0

0
f−(w)dw =

f−(w0)2(u− rw0)

(u− rw0)f ′−(w0) + rf−(w0)
.(A22)

We now show that at any point satisfying this first order condition, U(Q(u,w0, w0)) =
µHQ(u,w0, w0) + µL(1−Q(u,w0, w0)) < u; to do this, we prove the equivalent
inequality α

ν <
u−µL
µH−u . By (A22),

α

ν
=

f−(w0)2(u−rw0)
(u−rw0)f ′−(w0)+rf(w0)

λ2f−(w0)
2(u−rw0)

=
2

λ2

f−(w0)(u− rw0)2

(u− rw0)f ′−(w0) + rf−(w0)
<

2(u− rw0)2

λ2r
,

where we have used that f ′−(w0) > 0. It suffices then to show that 2(u−rw0)2

λ2r
<

u−µL
µH−u , or equivalently r > 2(u−rw0)2(µH−u)

λ2(u−µL)
. Since w0 ∈ (0, u/r), we have (u −

rw0)2 < u2, and thus it suffices to show that r > j(u) := 2u2(µH−u)
λ2(u−µL)

. Our claim

is that r̂ = maxu∈(0,µH) j(u), so that the condition r > r̂ as originally stated is
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sufficient. Now j′(u) = − 2
λ2

u[2u2−u(µH+3µL)+2µHµL]
(u−µL)2

. It is easy to verify that there

is a unique u ∈ (0, µH) at which j′(u) = 0 and where the maximum is attained,

namely u∗ := 1
4

[
µH + 3µL +

√
(µH + 3µL)2 − 16µHµL

]
, and j(u∗) = r̂.

To prove the second claim of the lemma, it suffices to show that for some
β ∈ (0, 1) there exists an instance of (µH , µL, c) such that r̂ < r∗∗(β) and thus the
set of feasible organizations with r > r̂ is nonempty by Lemma A.6. For β = 1/2,
(µH , µL, c) = (1/32,−1, 7/1024) is one such instance.

Proof of Proposition 6. The “only if” direction is trivial, as we can take ũ = u.
For the “if” direction, suppose that (w0, w∗) ∈ Su for some u ∈ (0, µH), with
U(Q(u,w0, w∗)) ≥ u; if equality holds, we are finished, so suppose there is strict
inequality. Now U is continuous and Q is continuous (in particular in u), and hence
ũ 7→ U(Q(ũ, w0, w∗))− ũ is continuous. By assumption, U(Q(ũ, w0, w∗))− ũ > 0
for ũ = u, and limũ↓rw∗ = U(0)− rw∗ < 0, so by the intermediate value theorem
there exists ũ ∈ (rw∗, u) such that U(Q(ũ, w0, w∗)) = ũ. The second statement of
the proposition is merely a translation of the first statement into notation, and
the third statement is a summary of Lemma A.7.

A3. Proofs for Section V

Proof of Proposition 7. First consider any fixed u such that Su is nonempty and
consider a sequence of organizations in Su for which organizational size converges
to the supremum of organizational size across organizations in Su. Note that
the set of such u is a compact subset of [u, u]. This sequence cannot involve
w0 → 0, since then organizational size vanishes. Hence, it lies in a compact subset
of Su and must have a subsequence which converges to a point (u,w0, w∗) in
this compact subset; (u,w0, w∗) then maximizes the organizational size across
feasible organizations. Since organizational size is increasing in w0, this point
must satisfy w0 = w0(w∗), and moreover, it must lie on the northeastern frontier
of the u-supportive set, since organizational size is increasing in w∗. We argue
that (u,w0, w∗) satisfies (7) and is thus feasible. Clearly, this must be true if
w0 < w∗, otherwise (u,w0, w∗) would not be on the northeastern frontier (there
would exist w̃∗ > w∗ such that (u,w0, w̃∗) is also u-supportive). Now if the top
of the northeastern frontier includes a point on the 45-degree line, that point is
the limit of some sequence of points on the northeastern frontier lying below the
45-degree line, and by continuity, it must be that (7) is satisfied at the top. So we
conclude that any size-maximizing organization in the u-supportive set is feasible.

By the maximum theorem, the function mapping u to the maximum organiza-
tional size over organizations in Su is continuous. Since the set of u for which Su

is nonempty is compact, this function attains its maximum and hence there exists
a size-maximizing feasible organization, (uOS , w

0
OS , w

∗
OS). This organization also

maximizes organizational size within SuOS and hence it lies on the northeastern
frontier of SuOS .
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Proof of Lemma 1. Fix 0 < w0 ≤ w∗ and consider any u1, u2 with u2 > u1 >
w∗r. Let prime notation denote derivatives with respect to w, and consider
f−. Recall that the boundary conditions f−(0;u) = 0 and f ′−(0+;u) = 2ψ

λ2
are

independent of u. Subtracting the ODE (A1) for u2 from the one for u1, we have
f ′′−(0+;u1)− f ′′−(0+;u2) = 2

λ2
(u2 − u1)f ′(0;u1) > 0. Hence, for sufficiently small

w > 0, f−(w;u1) > f−(w;u2) and f ′−(w;u1) > f ′−(w;u2). We claim that the
relationship f ′−(w;u1) > f ′−(w;u2), and hence f−(w;u1) > f−(w;u2), extends to
all w > 0. If not, let w′ be the smallest w > 0 for which f−(w;u1) = f−(w;u2),
and let w′′ be the smallest w ∈ (0, w′) such that f ′−(w;u1) = f ′−(w;u2) > 0. Again
using subtracting the ODEs, these facts imply that f ′′−(w′′;u1) > f ′′−(w′′;u2).
But this implies that for all w ∈ (0, w′′), f ′−(w;u1) < f ′−(w;u2), a contradiction.
Hence f−(w;u1) > f−(w;u2) and f ′−(w;u1) > f ′−(w;u2) for all w > 0. Turning to
f+, note that both of those inequalities hold in particular at w0, and hence the
third boundary condition from Lemma A.1 implies f ′+(w0;u1) > f ′+(w0;u2). Now
f+(w0;u1) = f−(w0;u1) > f−(w0;u2) = f+(w0;u2), and a similar argument to
that above shows that f+(w;u1) > f+(w;u2) and f ′+(w;u1) > f ′+(w;u2) for all w ∈
(w0, w∗], establishing the claim for f+. Since α =

∫ w0

0 f−(w) dw +
∫ w∗
w0 f+(w) dw,

where we have established that the integrands are pointwise decreasing in u, α

is decreasing in u. Finally, ν = λ2

2(u−rw∗)f+(w∗); both factors are decreasing in u,

and so is ν.

Proof of Proposition 8. As argued in the main text, there is no solution to the
maximization problem since w0 is restricted to be positive. Since Q is decreasing
in w0 and w∗PC(u) maximizes Q(u,w∗) (see Lemma A.5), we have V (u,w0, w∗) ≤
Q0(u,w∗PC(u)) for all feasible (u,w0, w∗). Now define uPC to be the supremum of
the set of u such that U(Q0(u,w∗PC(u))) > u, which is well-defined and less than
u as defined in Proposition 5. Define w∗PC = w∗PC(uPC) as the unique maximizer
of Q0(uPC , w

∗) with respect to w∗.
Let ũ denote the supremum of the set of u such that (u,w0, w∗) is feasible for

some w0, w∗. We show that uPC = ũ. First, note that uPC ≥ ũ. Indeed, ũ ≥ u
for all feasible (u,w0, w∗), and Q0(u,w∗PC(u)) ≥ Q0(u,w∗) > Q(u,w0, w∗) =
u, so u < uPC . Second, note that uPC ≤ ũ, since if u ≤ uPC is such that
U(Q0(u,w∗PC(u))) > u, there exists by continuity an organization (u,w0, w∗)
such that U(Q(u,w0, w∗)) > u and hence a feasible organization (u′, w0, w∗) with
u′ > u; since ũ ≥ u′, and u can be taken arbitrarily close to uPC , we have uPC ≤ ũ.
We conclude that uPC is the supremum of per capita output over the set of feasible
organizations, and hence uPC can be approximated arbitrarily closely using a
sequence of feasible organizations.

Finally, since per capita output is decreasing in w0 and since w∗PC is the
unique maximizer of Q(uPC , w

∗) wrt w∗, it follows that if a sequence of feasible
organizations converges to a vector other than (uPC , 0, w

∗
PC(uPC)), the principal’s

value converges to a value less than uPC , so any sequence of feasible organizations
for which per capita output converges to uPC must converge to (uPC , 0, w

∗
PC).


